skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ranka, Karnamohit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For any linear system with unreduced dynamics governed by invertible propagators, we derive a closed, time-delayed, linear system for a reduced-dimensional quantity of interest. This method does not target dimensionality reduction: rather, this method helps shed light on the memory-dependence of 1-electron reduced density matrices in time-dependent configuration interaction (TDCI), a scheme to solve for the correlated dynamics of electrons in molecules. Though time-dependent density functional theory has established that the 1-electron reduced density possesses memory-dependence, the precise nature of this memory-dependence has not been understood. We derive a symmetry/constraint-preserving method to propagate reduced TDCI electron density matrices. In numerical tests on two model systems (H2 and HeH+), we show that with sufficiently large time-delay (or memory-dependence), our method propagates reduced TDCI density matrices with high quantitative accuracy. We study the dependence of our results on time step and basis set. To implement our method, we derive the 4-index tensor that relates reduced and full TDCI density matrices. Our derivation applies to any TDCI system, regardless of basis set, number of electrons, or choice of Slater determinants in the wave function. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026